Menoufia University
Faculty of Engineering, Shebien El-kom
Basic Eng. Science Department
First Semester Examination, 2013-2014

Minoufia University

Subject: Operations Research

Code: BES602

Year: Post Graduate Time Allowed: 3 hours Total Marks: 100 Marks

Answer the following questions

Question 1 (30 marks)

Date of Exam: 23 / 1/2014

- (a). (5 marks) Define each of the following terms: Optimization, Pareto optimal solution, Artificial Intelligence
- (b). (10 marks) Write common approaches for scalarizing multi-objective optimization problems, and explain two of these approaches.
- (c) (15 marks) Using the necessary optimality conditions find the solution of the following problem

Max
$$f(x_1, x_2) = \pi x_1^2 x_2$$

Subject to
$$2\pi x_1^2 + 2\pi x_1 x_2 = A_0 = 24\pi$$

Question 2(25 marks)

- (a). (5 marks) Write Kuhn-Tucker necessary optimality conditions
- (b). (20 marks) Consider the following problem:

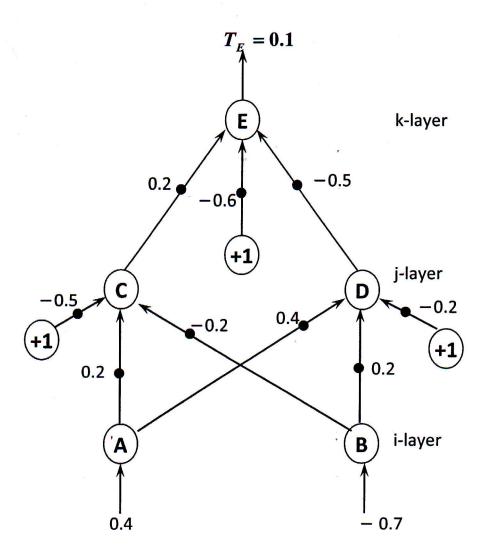
Minimize
$$f(x_1,x_2) = (x_1-1)^2 + x_2^2$$

subject to
$$g_1(x_1, x_2) = x_1^3 - 2x_2 \le 0$$

$$g_2(x_1, x_2) = x_1^3 + 2x_2 \le 0$$

Determine whether the constraint qualification and the Kuhn-Tucker conditions are satisfied at the optimum point.

Question 3(45 marks)


- (a) (5 marks) Draw schematic representation of an artificial neuron
- (b) (5 marks) Describe three types of transfer function used with Artificial neuron
- (c) (10 marks) Explain the learning and recall processes in artificial Neural network
- (d) (25 marks) A simple, fully connected feedforward neural network, where bias inputs of +1 and adjustable weights w_{1C} , w_{1D} and w_{1E} have been added to neurons C, D and E, respectively. All neuron have the same <u>Logistic activation function</u> with $\alpha = 1$ and the same <u>learning constant</u> $\eta = 0.5$. The desired output of neuron E is 0.1. The weights are randomized to the values shown in figure, and training is started. Then the *backpropagation* process is carried through one cycle.

Calculate the new value of connected weights after updating process using backpropagation.

Hint: for updating weights between layers j and k use equation (1), and between i and j use equation (2)

$$(1)\Delta w_{pq.k} = -\eta_{p.q} \left[-2\alpha \left(T_q - \Phi_{q.k} \right) \Phi_{q.k} \left(1 - \Phi_{q.k} \right) \Phi_{p.j} \right]$$

$$(2) \Delta w_{hp,j} = -\eta_{h,p} \left[\sum_{q=1}^{r} -2\alpha \left(T_{q} - \Phi_{q,k} \right) \Phi_{q,k} \left(1 - \Phi_{q,k} \right) w_{pq,k} (\alpha) \Phi_{p,j} (1 - \Phi_{p,j}) x_{h} \right]$$

With our best wishes

			- 71	his exam n	neasures	the fo	llowi	ng II.()s					
Quesition Number	Q1-a	Q2-a	Q3-a		(O)II-la	Q3±6				Q1-c	Q2-b	Q3-c		
or and a second	a2-2	a4-1	a5-1		i52 -31.	(bS∋i				c4-2	c5-1	c7-2		
(A) (B) (A) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B	Knowledge& Understanding Skills					intell	ectual	Skills		Professional Sk				