Menoufia University Faculty of Engineering, Shebien El-kom Basic Eng. Science Department First Semester Examination, 2013-2014 Date of Exam: 23/1/2014

Answer the following questions

Question $1(30$ marks)

(a). (5 marks) Define each of the following terms: Optimization, Pareto optimal solution, Artificial Intelligence
(b). (10 marks) Write common approaches for scalarizing multi-objective optimization problems, and explain two of these approaches.
(c) ($\mathbf{1 5}$ marks) Using the necessary optimality conditions find the solution of the following problem
$\operatorname{Max} f\left(x_{1}, x_{2}\right)=\pi x_{1}^{2} x_{2}$

Subject to

$$
2 \pi x_{1}^{2}+2 \pi x_{1} x_{2}=A_{0}=24 \pi
$$

Question 2(25 marks)

(a). (5 marks) Write Kuhn-Tucker necessary optimality conditions
(b). ($\mathbf{2 0} \mathbf{~ m a r k s) ~ C o n s i d e r ~ t h e ~ f o l l o w i n g ~ p r o b l e m : ~}$

$$
\begin{array}{ll}
\text { Minimize } & f\left(x_{1}, x_{2}\right)=\left(x_{1}-1\right)^{2}+x_{2}^{2} \\
\text { subject to } & g_{1}\left(x_{1}, x_{2}\right)=x_{1}^{3}-2 x_{2} \leq 0 \\
& g_{2}\left(x_{1}, x_{2}\right)=x_{1}^{3}+2 x_{2} \leq 0
\end{array}
$$

Determine whether the constraint qualification and the Kuhn-Tucker conditions are satisfied at the optimum point.

Question 3(45 marks)

(a) ($\mathbf{5}$ marks) Draw schematic representation of an artificial neuron
(b) ($\mathbf{5}$ marks) Describe three types of transfer function used with Artificial neuron
(c) ($\mathbf{1 0}$ marks) Explain the learning and recall processes in artificial Neural network
(d) ($\mathbf{2 5}$ marks) A simple, fully connected feedforward neural network, where bias inputs of +1 and adjustable weights $\boldsymbol{w}_{1 C}, \boldsymbol{w}_{1 D}$ and $\boldsymbol{w}_{1 E}$ have been added to neurons C, D and E , respectively. All neuron have the same Logistic activation function with $\alpha=1$ and the same learning constant $\boldsymbol{\eta}=\mathbf{0 . 5}$. The desired output of neuron E is $\mathbf{0 . 1}$. The weights are randomized to the values shown in figure, and training is started. Then the backpropagation process is carried through one cycle.

Calculate the new value of connected weights after updating process using backpropagation.

Hint: for updating weights between layers \boldsymbol{j} and \boldsymbol{k} use equation (1), and between \boldsymbol{i} and \boldsymbol{j} use equation (2)
(1) $\Delta w_{p q . k}=-\eta_{p . q}\left[-2 \alpha\left(T_{q}-\Phi_{q . k}\right) \Phi_{q . k}\left(1-\Phi_{q . k}\right) \Phi_{p . j}\right]$
(2) $\Delta w_{h p . j}=-\eta_{h . p}\left[\sum_{q=1}^{r}-2 \alpha\left(T_{q}-\Phi_{q . k}\right) \Phi_{q . k}\left(1-\Phi_{q . k}\right) w_{p q . k}(\alpha) \Phi_{p . j}\left(1-\Phi_{p . j}\right) x_{h}\right]$

With our best wishes

